Advances in
Cognitive Engineering
and
Neuroergonomics
Advances in Human Factors and Ergonomics 2014

5th International Conference on Applied Human Factors and Ergonomics

Advances in The Human Side of Service Engineering
Louis Freund and Wojciech Cellary

Advances in Human Factors and Sustainable Infrastructure
Jerzy Charytonowicz

Advances in Human Aspects of Healthcare
Vincent Duffy and Nancy Lightner

Advances in Applied Digital Human Modeling
Vincent Duffy

Advances in Cross-Cultural Decision Making
Sae Schatz, Joseph Cohn and Denise Nicholson

Advances in Human Factors, Software, and Systems Engineering
Ben Amaba and Brian Dalgetty

Advances in Human Aspects of Transportation (Part I, II, III)
Neville Stanton, Steve Landry Giuseppe Di Bucchianico and Andrea Vallicelli

Advances in Safety Management and Human Factors
Pedro Arezes and Paulo Carvalho

Advances in Cognitive Engineering and Neuroergonomics
Kay Stanney and Kelly Hale

Advances in Social and Organizational Factors
Peter Vink

Advances in The Ergonomics in Manufacturing: Managing the Enterprise of the Future
Stefan Trzcielinski and Waldemar Karwowski

Advances in Physical Ergonomics and Human Factors (Part I, II)
Tareq Ahram and Renliu Jang

Advances in Ergonomics In Design, Usability & Special Populations (Part I, II, III)
Marcelo Soares and Francisco Rebelo

Advances in Affective and Pleasurable Design
Yong Gu Ji and Sooshin Choi

Advances in Science, Technology, Higher Education and Society in the Conceptual Age: STHESCA
Tadeusz Marek
Table of Contents

Section 1: Operational Applications of Tactile and Multimodal Research and Displays

- **Tactile displays for cueing self-motion and looming: What would Gibson think?**
 B. Lawson, USA
 Page: 3

- **Tactile displays: From the cockpit to the clinic**
 B. McGrath, Australia, and A. Rupert, USA
 Page: 14

- **Tactile displays for soldier systems: Progress and issues**
 L. Elliott, B. Mortimer and A. Skinner, USA
 Page: 23

- **Effectiveness of vibrotactile and spatial audio directional cues for USAF pararescue jumpers (PJs)**
 J. Brill and V. Scerra, USA
 Page: 33

- **Do you feel... like I do? Individual differences and military cross-modal displays**
 R. Cholewiak, USA
 Page: 41

Section 2: Trust of Emergent Signal and Task Technologies

- **Is ignorance bliss? Role of credibility information and system reliability on user trust in emergent technologies**
 P. Madhavan, USA
 Page: 55

- **Impact of device reliability and route exposure on navigational performance**
 K. Kennedy and J. Bliss, USA, and L. Nunes, Portugal
 Page: 63

Section 3: Neuroergonomics of Human Performance

- **Neuroergonomics of skill acquisition: Genetic and non-invasive brain stimulation studies**
 R. Parasuraman, P. Greenwood, M. Scheldrup, B. Falcone, B. Kidwell and R. Mckendrick, USA
 Page: 73

- **Effects of fNIRS on physiological and performance under vibratory stimulus**
 J. Sugimoto and H. Hagiwara, Japan
 Page: 81

- **Brain activity during a visual stimulation task performed alone and with an auditory task**
 N. Komiyama and H. Hagiwara, Japan
 Page: 88
Inattentional deafness in simulated air traffic control tasks: A behavioural and P300 analysis
L. Giraudet, M. Berenger, J.-P. Imbert, S. Tremblay and M. Causse, France/Canada

Neurocognitive design methods for plastic model kit
M. Takao, M. Matsushima, S. Koretake, H. Shimizu and T. Kamei, Japan

Section 4: Interaction in 3D Environments and Computerized Training Systems

Effects of depth perception cues and display types on presence in the elderly within a 3D virtual store
C.-L. Liu and S.-T. Uang, Taiwan

The role of three-dimensional immersive environments in assessment and training of spatial skills
M. Kozhevnikov and I. Amihai, Singapore, and M. Kozhevnikov, USA

Features of collaboration in the VirCa immersive 3D environment
B. Hamornik, M. Koles, A. Komlodi, K. Hercegfi and L. Izso, Hungary/USA

The effect of knowledge of results during computerized system training
N. Gavish and H. Krisher, Israel

Using near infrared spectroscopy to detect mental overload in flight simulator
M. Causse and N. Matton, France

Section 5: Behavioral and Physiological Indicators of Human Performance

What eye tracking can reveal about dynamic decision-making
F. Vachon and S. Tremblay, Canada

Learning and recognition of facial images without awareness
T. Ott and S. Schmer-Galunder, USA

Eye tracking study: Overhead menu board and its effect on consumer purchase decision
A. Magadia, K. Medel, S. Reyes and L. Grepo, Philippines

Resource allocation strategies in multitasking after switch in task priorities
N. Matton, P. Paubel, J. Cegarra and E. Raufaste, France
Effects of inhaling essential oil on decreasing mental fatigue: A physiological indices study
S.-Y. Cheng, Taiwan

Ergonomics and teaching: An investigation about Brazilian teacher's stress
I. de Medeiros Costa and R. Carvalho, Brazil

Section 6: Cognitive Assessment: Readiness and Workload

Identifying automation opportunities in a life science process through operator task modeling and workload assessment
M. Swangnetr, Germany/Thailand, D. Kaber, USA, E. Vorberg, H. Fleischer and K. Thorow, Germany

Initial development of a cognitive load assessment tool
P. Thorvald and J. Lindblom, Sweden

Towards a framework for reducing cognitive load in manufacturing personnel
J. Lindblom and P. Thorvald, Sweden

Analysis of operator activity in the control room of the production and transfer of oil and natural gas in a Brazilian oil company
A. Reis and R. Carvalho, Brazil

Section 7: User-Centered Design

Mental models of eco-driving: Comparison of driving styles in a simulator
S. Pampel, S. Jamson, D. Hibberd and Y. Barnard, UK

Context aware interruptions: Existing research and required research
A. Kolbeinsson, P. Thorvald and J. Lindblom, Sweden
Preface

This book brings together a wide-ranging set of contributed articles that address emerging practices and future trends in cognitive engineering and neuroergonomics—both aim to harmoniously integrate human operator and computational system, the former through a tighter cognitive fit and the latter a more effective neural fit with the system. The chapters in this book uncover novel discoveries and communicate new understanding and the most recent advances in the areas of workload and stress, activity theory, human error and risk, and neuroergonomic measures, as well as associated applications.

The book is organized into seven main sections:

- Section 1: Operational Applications of Tactile and Multimodal Research and Displays
- Section 2: Trust of Emergent Signal and Task Technologies
- Section 3: Neuroergonomics of Human Performance
- Section 4: Interaction in 3D Environments and Computerized Training Systems
- Section 5: Behavioral and Physiological Indicators of Human Performance
- Section 6: Cognitive Assessment: Readiness and Workload
- Section 7: User-Centered Design

Collectively, the chapters in this book have an overall goal of developing a deeper understanding of the couplings between external behavioral and internal mental actions, which can be used to design harmonious work and play environments that seamlessly integrate human, technical, and social systems.

Each chapter of this book was either reviewed or contributed by members of the Cognitive & Neuroergonomics Board. For this, our sincere thanks and appreciation goes to the Board members listed below:

- H. Adeli, USA
- G. Bedny, USA
- J. Bliss, USA
- A. Burov, Ukraine
- P. Choe, China
- M. Cummings, USA
- M. Fafrowicz, Poland
- C. Fidopiastis, USA
- C. Forsythe, USA
- X. Fang, USA
- Q. Gao, China
- Y. Guo, USA
- P. Hancock, USA
- D. Kaber, USA
- B. Lawson, USA
- S.-Y. Lee, Korea
- H. Liao, USA
- Y. Liu, USA
- T. Marek, Poland
- J. Murray, USA
- C. Nemeth, USA
- D. Nicholson, USA
- A. Ozok, USA
- O. Parlange, Italy
- R. Proctor, USA
- D. Rodrick, USA
- A. Santamaria, USA
- A. Savoy, USA
- D. Schmorrow, USA
- N. Stanton, UK
- K. Vu, USA
- T. Waldmann, Ireland
- B. Winslow, USA
- G. Zacharias, USA
- L. Zeng, USA
It is our hope that professionals, researchers, and students alike find the book to be an informative and valuable resource; one that helps them to better understand important concepts, theories, and applications in the areas of cognitive engineering and neuroergonomics. Beyond basic understanding, the contributions are meant to inspire critical insights and thought-provoking lines of follow on research that further establish the fledgling field of neuroergonomics and sharpen the more seasoned practice of cognitive engineering. While we don’t know where the confluence of these two fields will lead, they are certain to transform the very nature of human-systems interaction, resulting in yet to be envisioned designs that improve form, function, efficiency, and the overall user experience for all.

July 2014

Kay M. Stanney and Kelly S. Hale
Design Interactive, Inc.
Orlando, FL USA
Editors